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Abstract

Let P(z) = Z?:o ajz’ be a polynomial of degree n, then Rahman
and Schmeisser [4] proved that for every p € [0, co] the inequality

1Pllp
|an| + |ao| <2
2 11+ 2l

holds, where

2m
1 i
IPlyi=4 o [1PEPd ] (0<p<o0)
0

[Pl|oo := max | P(z)]
|z|=1

and
1 2T
IPllo := exp 27T/log\P(eie)d@
0

In this paper, we obtain some estimates of the coefficients of a poly-
nomial P(z) which among other things include the above inequality
as a special case.
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1 Introduction and statement of results

Let P,, denotes the class of all polynomials of degree at most n with
complex coefficients.. For P € P, define,

p

27
1 .
I1Plyi={ 5 [ IPEPds b (0 <p<oc)
0

[Plloo := max | P(2)]

|z[=1

and

27

1 .
IIPllo := exp —/log|P(e’9|d9
27
0

If P € P, and P(2) = 3 7 ;a;2/, then by Rouche’s theorem, it follows that

P(2) + pl|Plloe =@n2" +an 12"+ .+ (ap + 1| Pllss)

does not vanish in the unit disk |z| < 1 for any choice of u € C with
\pu| = 1. Tt follows that |ag + || Pllec| > |an| for each p € C with |u| = 1. By
choosing the argument of u suitably, we get

|an| + lao| <[Pl (1.1)

This inequality is a well known result called as Visser’s inequality [5].
Equality in holds only when a; =0 for j = 1,2,..n — 1.
Different variants of this inequality can be found in [3]. Rahman and
Schmeisser [?] extended the inequality to L, norms and proved the
following:
If P € P, and P(2) = 3°7 a;2/, then

|an| + |ag| < Zﬂ for each p € [0, ] (1.2)

11+ 2|,

In this paper, we first prove the following result which among other things
include inequalities and as special cases. In fact, we prove the
following theorem.
Theorem 1.1. Let P € P, and P(z) = Y " a;2, then for each

0<p<oo,
P
lag| + |CZ€| <2 [ Plly for each 0 <p < oo (1.3)
2
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where £k = 1,2, ..n.

For k = n, the inequality (1.3]) reduces to (1.2)).

If we let p — oo in (|1.3]), we obtain the following result, from which the
Visser’s inequality follows when k = n.
Corollary 1.2. Let P € P, and P(z) = 3 7 a;2, then

ol + 81 < 1Pl
k
where £k = 1,2, ..n.
Theorem 1.1 can be improved if we restrict ourselves to the class of
polynomials having all zeros in |z| < 1. In this direction, we prove:

Theorem 1.3. If P € P, and P(z) = > "_;a;2’ having all its zeros in
|z] <1, then for each 0 < p < o0,

n— P
Rt S V.
(k:) 11+ 2|,
1 if k=n.
p—t p— 1
where k =1,2,..n and M, i
1+ =l

Note that 0 < M, < 1 for k < n and p > 0.

2 Lemmas

We first describe a result of Arestov [I]
For v= (70,71, ,7n) € C"*t and P(z)= Y a;27 € P,, we define
j=0

CyP(:) = 707
J:
The operator C, is said to be admissible if it preserves one of the following

properties:
(i) P(z) has all its zeros in |z| <1
(#7) P(z) has all its zeros in |z| > 1

The result of Arestov [I], (Theorem 2) may now be stated as follows,

Lemma 2.1. Let ¢(z) = ¢(logz), where 1) is a convex non-decreasing
function on R. Then for all P € P,, each admissible operator C.,

3
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folicnpends < [o(ctmpiel)as

where c(v) = max(|7ol, |7x])

In particular Lemma 2.1 applies with ¢ : x — 2P for every p € (0,00) and
with ¢ : x — logx as well. Therefore, we have for 0 < p < oo.

Jacspenrasy <cmd [1penpas (2.1

Lemma 2.2. Let P € P, and P(2) = > 7_; a;2’ having all its zeros in

|z| <1, then for k =1,2,...,n, ¢ real and each p > 0

27 27
/ (aoei”‘) + —a”n‘kei’“"> e’ + <%e“”’“)9 + an) do < QP / |P*(e)[Pdo
J @ @ 0

| B 1 if k< n.
where k =1,2,..n andQ—{ 11+ e if k= n.

Proof: Since P(z) has all its zeros in |z| < 1, then all zeros of
P*(z) = 2"P(1/Z) lie in |z| > 1 and |P(z)| = |P*(#)| for |2| = 1. Therefore,
P(z

P(2)

is analytic in |z| < 1.

By maximum modulus principle, we have

|P(2)] < [P*(2)] for |2 < 1.

or equivalently,
[P*(2)] < |P(2)] for |z = 1.

By Rouche’s theorem , all the zeros of the polynomial

n

PH2) — uP(z) = 3 (s — pay)?

=0
lie in |z] <1 for every p € C with |u| > 1. If 29, 29, -+ , 2,, are roots of
P*(z) — pP(z), then |2z;| <1, j=1,2,--- ,n and we have by Viete’s
formula for £k =1,2,--- ,n,
4
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n—k [ Qn—k + pag\
o (B LD, e

1<11<12<... <l <N

This gives

Up g + fag
Qo + [an

- > |2, 20+ 24| < (nfk) = <Z> (2.2)

1<i1<2<... <ty <N

Therefore, all the zeros of the polynomial

Ap—k + Hag k
(x)

NSRS (anz” + %zk>

(%) :

lie in |z| <1 for p € C with |p| > 1. So that if s > 1, the polynomial

G(2) = (ap + pa,)z" +

G(sz) = ap(sz)" ann_kszk an(sz)" %szk
(s2) ()+(k)()+u<()+()()>

k

has all its zeros in |z| < 1. This gives

aop(sz)" + n (52)* an(sz)" + &(sz)k

(%) (%)
for |z] > 1. For if inequality (2.3)) is not true, then there exists a point w
with |w| > 1 such that

< (2.3)

Go(sw)" + @(sw)k an(sw)"™ + %(sw)k
(%) (i)
Since all the zeros of P(z) lie in |z] < 1, then by similar argument as in

, we have |a,| > |(aTk)‘ which implies that a,(sw)" > %(sw)k # 0. If

k

>

we take
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then p is a well defined complex number with || > 1 and with this choice
of i we obtain Q(sw) = 0 where |w| > 1 which contradicts the fact that all
the zeros of Q(sz) lie in |z| < 1. Thus holds. If we let s — 1 in ([2.3])
and using continuity, it follows that,

apz" + @zk < la,z" + Cl—kzk = |a, + %z"‘k (2.4)
(%) (%) (%)
. . Qg . — ag —k
for |z| = 1.Again, since |a,| > || the polynomial |a@, + —z"""| does not

(i) (%)
vanish in |z| < 1.By the maximum modulus principle, it follows that,

_ ag
an+_zn k

(%)

an—k k
— <
(%)

By Rouche’s theorem, the polynomial

C‘YP*(Z) = <502’n + ann—k Zk) ei¢> + (%an +an>
(%) (x)

has all its zeros-in |z| > 1 Therefore , Cy is an admissible operator.
Applying (2.1)) of lemma (2.1); the required result follows for p > 0.

Gp2" + < for |z| < 1.

Lemma 2.3. Let a be a complex number independent of 6, where 6 is
real. Then for each p > 0

2m 2m
/}a+ew|pd0:/}1+|a|ei9|”de
0 0

Lemma 2.4. Let n be a positive integer and 0 < p < 0o
1+ 2"y = 1+ 2]lp-

For the above two Lemmas 2.3 and 2.4 see [2].

3 Proof of theorems
Proof of theorem 1.1. By hypothesis P € P,, we can write

P(z) = Pi(2)P2(2)
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where all the zeros of Pi(2) lie in |z| > 1 and all the zeros of P»(2) lie in

|z| < 1.First, we suppose that P(z) has no zero on |z| = 1.Let the degree of
polynomial P;(z) be k , then the polynomial P;f(z) has all its zeros in

|z| < 1and |P}(z)] =|Pi(z)| for |z| =1

Consider the polynomial
F(z) = Pi(2)Py(2)

then all the zeros of F(z) lie in |z| <1

By the maximum modulus principle, it follows that
|P(2)] < [E(2)] for |2| > 1
Since F'(z) # 0 for |z| > 1, a direct application of Rouche’s theorem shows
that the polynomial H(z) = P(z) 4+ pF(z) has all its zeros in |z| < 1, for
every u € C with |u| > 1.Let F(z) = Y b;z?, then the polynomial

=0

J
n

H(z) =) (a;+ pb;)2’

=0

has all its zeros in |z| < 1. If wy, wy, - -+ ,w, be roots of H(z), then

lwj| < 1,5 =1,2,...,n and we have by Viete’s formula for k =1,2,...,n
n—k [ Ok + ,Ubk B

1< <12<...<tp k<N

Now, proceeding similarly as in the proof of Lemma 2.2, we obtain

a by
a2 + —2F bo" + —2F

(%) (%)

for |z| < 1. This implies for each p > 0 and 0 < 0 < 2,

<

2w 2w
) AP ) b. ... |P
/‘aoeme + %elkﬁ’ do < / boe™ + Tkezke‘ do (3.1)
(+) (%)
0 0
7
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Again, since all the zeros of F'(z) = Y b;2? lie in |z| < 1, similarly as shown
j=0

b
before, the polynomial byz" + Tk)zk also has all its zeros in |z| < 1.
k

Therefore the operator C defined by

CyF(2) = bo2" + 52
(%)

is admissible. Hence by ([2.1) of Lemma 2.1, for each p > 0 we have

27 P 27

) b. . )
/ boe'™ + (T‘“)e“f" do < (c(v))? / |F'(e)[Pdo (3.2)
0 k 0

where ¢(y) = max(|yl, |7.|) = 1. Combining inequalities (3.1)),(3.2)) and
noting that |F'(e?)| = |P(e%)|, we obtain for each p > 0.
1/p

2T P 1/p 27
k| g S < / |P(®)[Pdg (3.3)
0

0/ @

Here, we claim that for n and k being positive with n > k, we have,

ao 6m0 +

) ol +
e I I (3.4)
R

Proof of the claim. If [ay| = 0 then (3.4)) follows by fact |1+ z||, < 2.
Thus we assume that if |G| # 0, then by Lemma 2.3 and Lemma 2.4, we

obtain
an—k
— n
o2 + ann_k =@l ||z + (_k)
() o
p
p
Ap—k,
()
= |ao| ||1 + 2211,
Qo
p
From the inequality
8
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an—k
i0 Y
‘1117:;9 = 1_2“0 with T = (ak) and 0= 02
0
We deduce, _ =
o],
ol |1+ || | > 14|
ao 2
This implies,
(1 Ay
1+ ||| = — =l e,
p

Using this in conjunction with (3.5), the desired claim follows.

Now using (3.3) in conjunction with (3.4}, we get,

(o)~ I+l

‘a0|‘F

(3.5)

In case P;(z) has a zero on |z| = 1, inequality (3.5 follows by continuity.

This proves Theorem 1.1 for p > 0. To obtain this result for p = 0, we

simply make p — 04.

Proof of Theorem 1.3. Since P(z) = Y_ a;2’ has all its zeros in |z| <1

7=0
Therefore, by (2.4), we have,
aoei’nﬂ + ann—k k0 < %ez’(n—k)a +a,
(%) (%)

fork=1,2,...,n

Also, by Lemma 2.2,

27 27

P
/ ‘H(@) +eG(0)] df < Qp/ |P*(e?)|Pdb
0 0

where H(0) = @pe™’ + n—k ciko

(%)
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and _
G(0) = -k gitn=b0 1 G,
(%)
Integrating both sides of (3.7]) with respect to ¢ from 0 to 27, we get for
each p > 0 and ¢ real

2w 27 2T 27
/ / |H(0) + G (0)]" dodg < / Qr / |P*(e®)|[PdOdg (3.8)
0 0 0 0

Now, for every real ¢ and ¢ > 1 and p > 0, we have
2m 2m
/\Heiﬂ”dqs Z/|1+ei¢‘pd¢
0 0

If H(6) # 0, we take t = |G(0)/H(0)|, then by (3.6)) £ > 1 and by using
Lemma 2.3 we get

ZH(G) +e?G(0)|" o = |H(e)pZ1 - eid’% pd¢
- H(Q)”Z cort | S o

2T
> [HEOP [ 1+ eopds
0

For H(0) = 0, this inequality is trivially true. Using this in (3.8]),we
conclude that, for real ¢,

21 27 21

2n
0/ |H(0)Fdo / 11+ ePdg < / QPdo 0/ |P* (™) |Pdb.

0 0

which implies,

1/p
21

/

0

27 Up on
po) P {f deqs} {f \P*(eie)ypde}
0 0

oy < :
2 /p
{f 11+ ei¢|f’d¢}
0

em@ + n esz

(%)

ag

10
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Using this in conjunction with (3.4)), we get

. p
auf o el < g 1P
(k) 1 +Z||p
n— P
S o Sy O
(k) 1 +Z||p
1 if k= n.
pu— p— 1
where k =1,2,..n and M, itk <.
11+ 2],
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