Some estimates of the coefficients of polynomials

Mushtaq Ahmad Shah ${ }^{1}$, Sirazul Haq ${ }^{2}$, Aijaz Ahmad ${ }^{2}$

${ }^{1}$ Department of Mathematics
Government College of Engineering and Technology, Safapora, Ganderbal
e-mail: mushtaqa022@gmail.com
${ }^{2}$ Department of Mathematics, J.S. University, Shikohabad(Firozabad), U.P, India.
e-mail: sirajulhaq007@gmail.com , aiju.aijaz117@gmail.com

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n, then Rahman and Schmeisser [4] proved that for every $p \in[0, \infty]$ the inequality

$$
\left|a_{n}\right|+\left|a_{0}\right| \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}}
$$

holds, where

$$
\begin{aligned}
&\|P\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}(0<p<\infty) \\
&\|P\|_{\infty}:=\max _{|z|=1}|P(z)| \\
& \text { and } \\
&\|P\|_{0}:=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta\right\} .
\end{aligned}
$$

In this paper, we obtain some estimates of the coefficients of a polynomial $P(z)$ which among other things include the above inequality as a special case.

Mathematics Subject Classification: 30C10, 30A10, 41A17.
Keywords and Phrases: Polynomials, inequalities, estimates, operator.

1 Introduction and statement of results

Let \mathcal{P}_{n} denotes the class of all polynomials of degree at most n with complex coefficients.. For $P \in \mathcal{P}_{n}$ define,

$$
\begin{aligned}
& \|P\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \left\lvert\, P\left(\left.e^{i \theta)}\right|^{p} d \theta\right\}^{\frac{1}{p}}(0<p<\infty)\right.\right. \\
& \|P\|_{\infty}:=\max _{|z|=1}|P(z)|
\end{aligned}
$$

and

$$
\|P\|_{0}:=\exp \left\{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \right\rvert\, P\left(e^{i \theta} \mid d \theta\right\}\right.
$$

If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then by Rouche's theorem, it follows that

$$
\bar{P}(z)+\mu\|P\|_{\infty}=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+\left(a_{0}+\mu\|P\|_{\infty}\right)
$$

does not vanish in the unit disk $|z|<1$ for any choice of $\mu \in \mathbb{C}$ with $|\mu|=1$. It follows that $\left|a_{0}+\mu\|P\|_{\infty}\right| \geq\left|a_{n}\right|$ for each $\mu \in \mathbb{C}$ with $|\mu|=1$. By choosing the argument of μ suitably, we get

$$
\begin{equation*}
\left|a_{n}\right|+\left|a_{0}\right| \leq\|P\|_{\infty} \tag{1.1}
\end{equation*}
$$

This inequality is a well known result called as Visser's inequality [5]. Equality in (1.1) holds only when $a_{j}=0$ for $j=1,2, \ldots n-1$.
Different variants of this inequality can be found in [3]. Rahman and Schmeisser [?] extended the inequality (1.1) to L_{p} norms and proved the following:
If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then

$$
\begin{equation*}
\left|a_{n}\right|+\left|a_{0}\right| \leq 2 \frac{\|P\|}{\|1+z\|_{p}} \quad \text { for each } p \in[0, \infty] \tag{1.2}
\end{equation*}
$$

In this paper, we first prove the following result which among other things include inequalities (1.1) and (1.2) as special cases. In fact, we prove the following theorem.
Theorem 1.1. Let $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then for each $0 \leq p<\infty$,

$$
\begin{equation*}
\left|a_{0}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}} \quad \text { for each } 0 \leq p<\infty \tag{1.3}
\end{equation*}
$$

where $k=1,2, \ldots n$.
For $k=n$, the inequality (1.3) reduces to (1.2).
If we let $p \rightarrow \infty$ in (1.3), we obtain the following result, from which the
Visser's inequality follows when $k=n$.
Corollary 1.2. Let $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then

$$
\left|a_{0}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq\|P\|_{\infty}
$$

where $k=1,2, \ldots n$.
Theorem 1.1 can be improved if we restrict ourselves to the class of polynomials having all zeros in $|z| \leq 1$. In this direction, we prove:

Theorem 1.3. If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ having all its zeros in $|z| \leq 1$, then for each $0 \leq p<\infty$,

$$
\left|a_{0}\right|+\frac{\left|a_{n-k}\right|}{\binom{n}{k}} \leq 2 M_{p} \frac{\|P\|_{p}}{\|1+z\|_{p}}
$$

$$
\begin{aligned}
& \text { where } k=1,2, \ldots n \text { and } M_{p}=\left\{\begin{array}{cl}
\frac{1}{1} & \text { if } k=n . \\
\frac{1}{\|1+z\|_{p}} & \text { if } k<n .
\end{array}\right. \\
& \text { Note that } 0<M_{p}<1 \text { for } k<n \text { and } p>0 .
\end{aligned}
$$

2 Lemmas

We first describe a result of Arestov [1]
For $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{n}\right) \in \mathbb{C}^{n+1}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j} \in \mathcal{P}_{n}$, we define $C_{\gamma} P(z)=\sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}$
The operator C_{γ} is said to be admissible if it preserves one of the following properties:
(i) $P(z)$ has all its zeros in $|z| \leq 1$
(ii) $P(z)$ has all its zeros in $|z| \geq 1$

The result of Arestov [1], (Theorem 2) may now be stated as follows,
Lemma 2.1. Let $\varphi(x)=\psi(\log x)$, where ψ is a convex non-decreasing function on \mathbb{R}. Then for all $P \in \mathcal{P}_{n}$ each admissible operator C_{γ},
$\int_{0}^{2 \pi} \varphi\left(\left|C_{\boldsymbol{\gamma}} P\left(e^{i \theta}\right)\right|\right) d \theta \leq \int_{0}^{2 \pi} \varphi\left(\left|c(\gamma) P\left(e^{i \theta}\right)\right|\right) d \theta$
where $c(\gamma)=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)$
In particular Lemma 2.1 applies with $\varphi: x \rightarrow x^{p}$ for every $p \in(0, \infty)$ and with $\varphi: x \rightarrow \log x$ as well. Therefore, we have for $0 \leq p<\infty$.

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left(\left|C_{\boldsymbol{\gamma}} P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}} \leq c(\boldsymbol{\gamma})\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}\right. \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ having all its zeros in
$|z| \leq 1$, then for $k=1,2, \ldots, n, \phi$ real and each $p>0$

$$
\begin{gathered}
\int_{0}^{2 \pi}\left|\left(\bar{a}_{0} e^{i n \theta}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} e^{i k \theta}\right) e^{i \phi}+\left(\frac{\bar{a}_{k}}{\binom{n}{k}} e^{i(n-k) \theta}+\bar{a}_{n}\right)\right| d \theta \leq \Omega^{p} \int_{0}^{2 \pi}\left|P^{*}\left(e^{i \theta}\right)\right|^{p} d \theta \\
\text { where } k=1,2, \ldots n \text { and } \Omega=\left\{\begin{array}{cl}
1 & \text { if } k<n . \\
\left|1+e^{i \phi}\right| & \text { if } k=n .
\end{array}\right.
\end{gathered}
$$

Proof: Since $\mathrm{P}(\mathrm{z})$ has all its zeros in $|z| \leq 1$, then all zeros of $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$ lie in $|z|>1$ and $|P(z)|=\left|P^{*}(z)\right|$ for $|z|=1$. Therefore, $\frac{P(z)}{P^{*}(z)}$ is analytic in $|z| \leq 1$.

By maximum modulus principle, we have

$$
|P(z)| \leq\left|P^{*}(z)\right| \text { for }|z| \leq 1
$$

or equivalently,

$$
\left|P^{*}(z)\right| \leq|P(z)| \text { for }|z| \geq 1
$$

By Rouche's theorem, all the zeros of the polynomial

$$
P^{*}(z)-\mu P(z)=\sum_{j=0}^{n}\left(\bar{a}_{n-j}-\mu a_{j}\right) z^{j}
$$

lie in $|z| \leq 1$ for every $\mu \in \mathbb{C}$ with $|\mu|>1$. If $z_{1}, z_{2}, \cdots, z_{n}$ are roots of $P^{*}(z)-\mu P(z)$, then $\left|z_{j}\right| \leq 1, j=1,2, \cdots, n$ and we have by Viete's formula for $k=1,2, \cdots, n$,

$$
(-1)^{n-k}\left(\frac{\bar{a}_{n-k}+\mu a_{k}}{\bar{a}_{0}+\mu a_{n}}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-k} \leq n} z_{i_{1}} z_{i_{2}} \cdots z_{i_{n-k}}
$$

This gives

$$
\begin{equation*}
\left|\frac{\bar{a}_{n-k}+\mu a_{k}}{\bar{a}_{0}+\mu a_{n}}\right|=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-k} \leq n}\left|z_{i_{1}} z_{i_{2}} \cdots z_{i_{n-k}}\right| \leq\binom{ n}{n-k}=\binom{n}{k} \tag{2.2}
\end{equation*}
$$

Therefore, all the zeros of the polynomial

$$
\begin{aligned}
\mathcal{G}(z) & =\left(\bar{a}_{0}+\mu a_{n}\right) z^{n}+\frac{\bar{a}_{n-k}+\mu a_{k}}{\binom{n}{k}} z^{k} \\
& =\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}+\mu\left(a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right)
\end{aligned}
$$

lie in $|z| \leq 1$ for $\mu \in \mathbb{C}$ with $|\mu|>1$. So that if $s>1$, the polynomial

$$
\mathcal{G}(s z)=\bar{a}_{0}(s z)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(s z)^{k}+\mu\left(a_{n}(s z)^{n}+\frac{a_{k}}{\binom{n}{k}}(s z)^{k}\right)
$$

has all its zeros in $|z|<1$. This gives

$$
\begin{equation*}
\left|\bar{a}_{0}(s z)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(s z)^{k}\right| \leq\left|a_{n}(s z)^{n}+\frac{a_{k}}{\binom{n}{k}}(s z)^{k}\right| \tag{2.3}
\end{equation*}
$$

for $|z| \geq 1$. For if inequality (2.3) is not true, then there exists a point w with $|w| \geq 1$ such that

$$
\left|\bar{a}_{0}(s w)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(s w)^{k}\right|>\left|a_{n}(s w)^{n}+\frac{a_{k}}{\binom{n}{k}}(s w)^{k}\right|
$$

Since all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$, then by similar argument as in (2.2), we have $\left|a_{n}\right| \geq\left|\frac{a_{k}}{\binom{n}{k}}\right|$ which implies that $a_{n}(s w)^{n} \geq \frac{a_{k}}{\binom{n}{k}}(s w)^{k} \neq 0$. If we take

$$
\mu=-\frac{\bar{a}_{0}(s w)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(s w)^{k}}{a_{n}(s w)^{n}+\frac{a_{k}}{\binom{n}{k}}(s w)^{k}}
$$

then μ is a well defined complex number with $|\mu|>1$ and with this choice of μ we obtain $\mathcal{Q}(s w)=0$ where $|w| \geq 1$ which contradicts the fact that all the zeros of $\mathcal{Q}(s z)$ lie in $|z|<1$. Thus (2.3) holds. If we let $s \rightarrow 1$ in (2.3) and using continuity, it follows that,

$$
\begin{equation*}
\left|\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right| \leq\left|a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right|=\left|\bar{a}_{n}+\frac{\bar{a}_{k}}{\binom{n}{k}} z^{n-k}\right| \tag{2.4}
\end{equation*}
$$

for $|z|=$ 1.Again, since $\left|a_{n}\right| \geq\left|\frac{a_{k}}{\binom{n}{k}}\right|$ the polynomial $\left|\bar{a}_{n}+\frac{\bar{a}_{k}}{\binom{n}{k}} z^{n-k}\right|$ does not vanish in $|z|<1$.By the maximum modulus principle, it follows that,

$$
\left|\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right|<\left|\bar{a}_{n}+\frac{\bar{a}_{k}}{\binom{n}{k}} z^{n-k}\right| \quad \text { for }|z|<1
$$

By Rouche's theorem, the polynomial

$$
C_{\gamma} P^{*}(z)=\left(\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right) e^{i \phi}+\left(\frac{\bar{a}_{k}}{\binom{n}{k}} z^{n-k}+\bar{a}_{n}\right)
$$

has all its zeros in $|z| \geq 1$. Therefore, C_{γ} is an admissible operator.
Applying (2.1) of lemma (2.1), the required result follows for $p>0$.
Lemma 2.3. Let α be a complex number independent of θ, where θ is real. Then for each $p>0$

$$
\int_{0}^{2 \pi}\left|\alpha+e^{i \theta}\right|^{p} d \theta=\int_{0}^{2 \pi}\left|1+|\alpha| e^{i \theta}\right|^{p} d \theta
$$

Lemma 2.4. Let n be a positive integer and $0 \leq p \leq \infty$ $\left\|1+z^{n}\right\|_{p}=\|1+z\|_{p}$.

For the above two Lemmas 2.3 and 2.4 see [2].

3 Proof of theorems

Proof of theorem 1.1. By hypothesis $P \in \mathcal{P}_{n}$, we can write

$$
P(z)=P_{1}(z) P_{2}(z)
$$

where all the zeros of $P_{1}(z)$ lie in $|z|>1$ and all the zeros of $P_{2}(z)$ lie in $|z| \leq 1$.First, we suppose that $P_{2}(z)$ has no zero on $|z|=1$. Let the degree of polynomial $P_{1}(z)$ be k, then the polynomial $P_{1}^{*}(z)$ has all its zeros in $|z| \leq 1$ and $\left|P_{1}^{*}(z)\right|=\left|P_{1}(z)\right|$ for $|z|=1$

Consider the polynomial
$F(z)=P_{1}^{*}(z) P_{2}(z)$
then all the zeros of $\mathrm{F}(\mathrm{z})$ lie in $|z| \leq 1$

$$
\begin{aligned}
|F(z)| & =\left|P_{1}^{*}(z)\right|\left|P_{2}(z)\right| \\
& =\left|P_{1}(z)\right|\left|P_{2}(z)\right| \\
& =|P(z)|
\end{aligned}
$$

By the maximum modulus principle, it follows that

$$
|P(z)| \leq|F(z)| \text { for }|z| \geq 1
$$

Since $F(z) \neq 0$ for $|z| \geq 1$, a direct application of Rouche's theorem shows that the polynomial $H(z)=P(z)+\mu F(z)$ has all its zeros in $|z|<1$, for every $\mu \in \mathbb{C}$ with $|\mu|>1$.Let $F(z)=\sum_{j=0}^{n} b_{j} z^{j}$, then the polynomial

$$
H(z)=\sum_{j=0}^{n}\left(a_{j}+\mu b_{j}\right) z^{j}
$$

has all its zeros in $|z|<1$. If $w_{1}, w_{2}, \cdots, w_{n}$ be roots of $\mathrm{H}(\mathrm{z})$, then $\left|w_{j}\right|<1, j=1,2, \ldots, n$ and we have by Viete's formula for $k=1,2, \ldots, n$

$$
(-1)^{n-k}\left(\frac{a_{k}+\mu b_{k}}{a_{0}+\mu b_{0}}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-k} \leq n} w_{i_{1}} w_{i_{2}} \cdots w_{i_{n-k}}
$$

Now, proceeding similarly as in the proof of Lemma 2.2, we obtain

$$
\left|a_{0} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right| \leq\left|b_{0} z^{n}+\frac{b_{k}}{\binom{n}{k}} z^{k}\right|
$$

for $|z| \leq 1$. This implies for each $p>0$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|a_{0} e^{i n \theta}+\frac{a_{k}}{\binom{n}{k}} e^{i k \theta}\right|^{p} d \theta \leq \int_{0}^{2 \pi}\left|b_{0} e^{i n \theta}+\frac{b_{k}}{\binom{n}{k}} e^{i k \theta}\right|^{p} d \theta \tag{3.1}
\end{equation*}
$$

Again, since all the zeros of $F(z)=\sum_{j=0}^{n} b_{j} z^{j}$ lie in $|z|<1$, similarly as shown before, the polynomial $b_{0} z^{n}+\frac{b_{k}}{\binom{n}{k}} z^{k}$ also has all its zeros in $|z|<1$. Therefore the operator C_{γ} defined by

$$
C_{\gamma} F(z)=b_{0} z^{n}+\frac{b_{k}}{\binom{n}{k}} z^{k}
$$

is admissible. Hence by (2.1) of Lemma 2.1, for each $p>0$ we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|b_{0} e^{i n \theta}+\frac{b_{k}}{\binom{n}{k}} e^{i k \theta}\right|^{p} d \theta \leq(c(\gamma))^{p}\left(\int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta\right) \tag{3.2}
\end{equation*}
$$

where $c(\gamma)=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)=1$. Combining inequalities (3.1), (3.2) and noting that $\left|F\left(e^{i \theta}\right)\right|=\left|P\left(e^{i \theta}\right)\right|$, we obtain for each $p>0$.

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|a_{0} e^{i n \theta}+\frac{a_{k}}{\binom{n}{k}} e^{i k \theta}\right|^{p} d \theta\right\}^{1 / p} \leq\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \tag{3.3}
\end{equation*}
$$

Here, we claim that for n and k being positive with $n>k$, we have,

$$
\begin{equation*}
\left\|\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right\|_{p} \geq \frac{\left|\bar{a}_{0}\right|+\frac{\left|\bar{a}_{n-k}\right|}{\binom{n}{k}}}{2}\|1+z\|_{p} . \tag{3.4}
\end{equation*}
$$

Proof of the claim. If $\left|\bar{a}_{0}\right|=0$ then (3.4) follows by fact $\|1+z\|_{p}<2$. Thus we assume that if $\left|\bar{a}_{0}\right| \neq 0$, then by Lemma 2.3 and Lemma 2.4, we obtain

$$
\begin{aligned}
\left\|\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right\|_{p} & =\left|\bar{a}_{0}\right|\left\|z+\frac{\frac{\bar{a}_{n-k}}{\binom{n}{k}}}{\bar{a}_{0}}\right\|_{p} \\
& =\left|\bar{a}_{0}\right|
\end{aligned}\left\|1+\frac{\left\lvert\, \frac{\bar{a}_{n-k}}{\binom{n}{k}}\right.}{\bar{a}_{0}} z\right\|_{p} .
$$

From the inequality

$$
\left|\frac{1+r e^{i \theta}}{1+e^{i \theta}}\right| \geq \frac{1+r}{2} \text { with } r=\left|\frac{\frac{\bar{a}_{n-k}}{\binom{n}{k}}}{\bar{a}_{0}}\right| \text { and } 0 \leq \theta<2 \pi
$$

We deduce,

$$
\left|\bar{a}_{0}\right|\left|1+\left|\frac{\frac{\bar{a}_{n-k}}{\binom{n}{k}}}{\bar{a}_{0}}\right| e^{i \theta}\right| \geq \frac{\left|\bar{a}_{0}\right|+\frac{\left|\bar{a}_{n-k}\right|}{\binom{n}{k}}}{2}\left|1+e^{i \theta}\right|
$$

This implies,

$$
\left|\bar{a}_{0}\right|\left\|1+\left|\frac{\frac{\bar{a}_{n-k}}{\binom{n}{k}}}{\bar{a}_{0}}\right| e^{i \theta}\right\|_{p} \geq \frac{\left|\bar{a}_{0}\right|+\frac{\left|\bar{a}_{n-k}\right|}{\binom{n}{k}}}{2}\left\|1+e^{i \theta}\right\|_{p}
$$

Using this in conjunction with (3.5), the desired claim follows.
Now using (3.3) in conjunction with (3.4), we get,

$$
\begin{equation*}
\left|a_{0}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}} \tag{3.5}
\end{equation*}
$$

In case $P_{1}(z)$ has a zero on $|z|=1$, inequality (3.5) follows by continuity. This proves Theorem 1.1 for $p>0$. To obtain this result for $p=0$, we simply make $p \rightarrow 0+$.

Proof of Theorem 1.3. Since $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ has all its zeros in $|z| \leq 1$ Therefore, by (2.4), we have,

$$
\begin{equation*}
\left|\bar{a}_{0} e^{i n \theta}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} e^{i k \theta}\right| \leq\left|\frac{\bar{a}_{k}}{\binom{n}{k}} e^{i(n-k) \theta}+\bar{a}_{n}\right| \tag{3.6}
\end{equation*}
$$

for $k=1,2, \ldots, n$
Also, by Lemma 2.2,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|H(\theta)+e^{i \phi} G(\theta)\right|^{p} d \theta \leq \Omega^{p} \int_{0}^{2 \pi}\left|P^{*}\left(e^{i \theta}\right)\right|^{p} d \theta \tag{3.7}
\end{equation*}
$$

where $H(\theta)=\bar{a}_{0} e^{i n \theta}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} e^{i k \theta}$
and
$G(\theta)=\frac{\bar{a}_{k}}{\binom{n}{k}} e^{i(n-k) \theta}+\bar{a}_{n}$.
Integrating both sides of (3.7) with respect to ϕ from 0 to 2π, we get for each $p>0$ and ϕ real

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|H(\theta)+e^{i \phi} G(\theta)\right|^{p} d \theta d \phi \leq \int_{0}^{2 \pi} \Omega^{p} \int_{0}^{2 \pi}\left|P^{*}\left(e^{i \theta}\right)\right|^{p} d \theta d \phi \tag{3.8}
\end{equation*}
$$

Now, for every real ϕ and $t \geq 1$ and $p>0$, we have

$$
\int_{0}^{2 \pi}\left|t+e^{i \phi}\right|^{p} d \phi \geq \int_{0}^{2 \pi}\left|1+e^{i \phi}\right|^{p} d \phi
$$

If $H(\theta) \neq 0$, we take $t=|G(\theta) / H(\theta)|$, then by (3.6) $t \geq 1$ and by using Lemma 2.3 we get

$$
\begin{array}{r}
\int_{0}^{2 \pi}\left|H(\theta)+e^{i \phi} G(\theta)\right|^{p} d \theta=|H(\theta)|^{p} \int_{0}^{2 \pi}\left|1+e^{i \phi} \frac{G(\theta)}{H(\theta)}\right|^{p} d \phi \\
=|H(\theta)|^{p} \int_{0}^{2 \pi}\left|e^{i \phi}+\left|\frac{G(\theta)}{H(\theta)}\right|\right|^{p} d \phi \\
\geq|H(\theta)|^{p} \int_{0}^{2 \pi}\left|1+e^{i \phi}\right|^{p} d \phi
\end{array}
$$

For $H(\theta)=0$, this inequality is trivially true. Using this in (3.8), we conclude that, for real ϕ,

$$
\int_{0}^{2 \pi}|H(\theta)|^{p} d \theta \int_{0}^{2 \pi}\left|1+e^{i \phi}\right|^{p} d \phi \leq \int_{0}^{2 \pi} \Omega^{p} d \phi \int_{0}^{2 \pi}\left|P^{*}\left(e^{i \theta}\right)\right|^{p} d \theta
$$

which implies,

$$
\left\{\int_{0}^{2 \pi}\left|\bar{a}_{0} e^{i n \theta}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} e^{i k \theta}\right|^{p} d \theta\right\}^{1 / p} \leq \frac{\left\{\int_{0}^{2 \pi} \Omega^{p} d \phi\right\}^{1 / p}\left\{\int_{0}^{2 \pi}\left|P^{*}\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \phi}\right|^{p} d \phi\right\}^{1 / p}}
$$

Using this in conjunction with (3.4), we get

$$
\begin{aligned}
&\left|\bar{a}_{0}\right|+\frac{\left|\bar{a}_{n-k}\right|}{\binom{n}{k}} \leq 2 M_{p} \frac{\left\|P^{*}(z)\right\|_{p}}{\|1+z\|_{p}} \\
& \text { or } \quad\left|a_{0}\right|+\frac{\left|a_{n-k}\right|}{\binom{n}{k}} \leq 2 M_{p} \frac{\|P(z)\|_{p}}{\|1+z\|_{p}} \\
& \quad \text { where } k=1,2, \ldots n \text { and } M_{p}=\left\{\begin{array}{cc}
1 & \text { if } k=n . \\
\frac{1}{\|1+z\|_{p}} & \text { if } k<n .
\end{array}\right.
\end{aligned}
$$

References

[1] V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat. 45(1981) 3-22 (in Russian); English translation: Math. USSR, Izv18(1982) 1-17.
[2] R.B. Gardner, N.K. Govil, An Lp inequality for a polynomial and its derivative, J. Math. Anal. Appl. 193(1995) 490-496.
[3] Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[4] Q.I. Rahman, G. Schmeisser, Lp inequalities for polynomial, J. Approx. Theory 53(1988) 26-32.
[5] C. Visser, A simple proof of certain inequalities concerning polynomials, Proc. K. Ned. Akad. Wet. 47(1945) 276-281.

